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PREFACE

The study of the sump for the Yazoo Backwater Pumping Station was
authorized by the Headquarters, US Army Corps of Engineers (HQUSACE), on
15 February 1984, at the request of the US Army Engineer District, Vicksburg
(LMK) .

The study was conducted during the period February 1984 to December 1987
in the Hydraulics Laboratory of the US Army Engineer Waterways Experiment
Station (WES) under the direction of Messrs. H. B. Simmons and F. A.

Herrmann, Jr., former and present Chiefs of the Hydraulics Laboratory, and

J. L. Grace, Jr., and Glenn A. Pickering, former and present Chiefs of the
Hydraulic Structures Division. The tests were conducted by Messrs. Bobby P.
Fletcher and James R. Rucker, Jr., Spillways and Channels Branch, under the
direct supervision of Mr. Noel R. Oswalt, Chief of the Spillways and Channels
Branch. This report was prepared by Mr. Fletcher and edited by Mrs. Marsha C.
Gay, Information Technology Laboratory, WES.

During the course of the study, Messrs. Tom Munsey and John S.
Robertson, HQUSACE; Glenn C. Miller, Claudy E. Thomas, and Malcolm L. Dove,

US Army Engineer Division, Lower Mississippi River; Jim Luther, US Army
Engineer District, St. Louis; and Fred Lee, John P. Meador, Johnny G. Sanders,
Charles A. McKinnie, and William L. Holman, LMK, visited WES to discuss the
program of model tests, observe the model in operation, and correlate test
results with concurrent design work.

Commander and Director of WES during preparation of this report was

COL Larry B. Fulton, EN. Technical Director was Dr. Robert W. Whalin.
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CONVERSION FACTORS, NON-SI TO SI (METRIC)
UNITS OF MEASUREMENT

Non-SI units of measurement used in this report can be converted to SI

(metric) units as follows:

Multiply By To Obtain
acres 4,046,873 square metres
cubic feet 0.02831685 cubic metres
degrees (angle) 0.01745329 radians
feet 0.3048 metres
feet of water (39.2° F) 2,988.98 pascals
inches 25.4 millimetres
miles (US statute) 1.609347 kilometres
square miles 2.589998 square kilometres
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YAZOO BACKWATER PUMPING STATION
WEST-CENTRAL MISSISSIPPI

Hydraulic Model Investigation

PART I: INTRODUCTION

The Prototype

1. The Yazoo Backwater Area, located in west-central Mississippi
(Figure 1), contains approximately 1,406 square miles® (Figure 2) protected
from backwater flooding and has a drainage area of 4,093 square miles of
alluvial land.

2. The project area comprises approximately 539,000 acres in the lower
portion of the Yazoo Area, which is subject to inundation by the
100-year flood (Figure 2), and includes parts of Humphreys, Issaquena,
Sharkey, Warren, Washington, and Yazoo Counties, Mississippi, and part of
Madison Parish, Louisiana. This area is generally triangular in shape and
extends northward from Vicksburg some 60 miles to the latitude of Hollandale
and Belzoni, Mississippi. Big Sunflower and Little Sunflower Rivers, Deer
Creek, and Steele Bayou flow through the area. The Deer Creek ridge, a ridge
of higher ground along which US Highway 61 runs, divides the area into two
separate ponding areas. Interior drainage in the upper ponding area is
evacuated by a drainage structure at the mouth of the Little Sunflower River,
while interior drainage in the lower ponding area is evacuated by a drainage
structure at the mouth of Steele Bayou.

3. The proposed Yazoo Backwater Pumping Station will be located in the
lower ponding area approximately 0.8 mile west of the Steele Bayou drainage
structure (Figure 1). At the beginning of this model study, the proposed pump
station capacity was 17,500 cfs. During the study, the capacity was reduced
to 10,000 cfs. The station will be operated in an attempt to maintain an

80-ft*™ sump stage from March through November and an 85-ft sump from December

*

A table of factors for converting non-SI units of measurement to SI
(metric) units is found on page 3.

All elevations (el) and stages cited herein are in feet referred to the
National Geodetic Vertical Datum (NGVD).

1]
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through February. Pumping would be initiated when interior ponding reaches

el 80, except during the period 1 December-1 March when pumping would be
initiated at el 85. The frequency of flooding below el 80 would be unchanged.
The full pump capacity of 10,000 cfs will be used only with large floods. The
inlet channel will be approximately 4,000 ft long and have a 340-ft bottom
width (Plate 1). The depth of the channel will vary from 10 to 30 ft as the
lay of the land varies. The inlet channel side slopes will be constructed
with a 1V:4H slope.

4. The 10,000-cfs pumping station sump (Plates 2 and 3) will consist of
nine bays, each having a 23-ft interior width. The floor of the sump will be
located at el 59.0 and remain level throughout its length. Each sump wall
will be 80.0 ft in length to provide good approach flow conditions and to
provide room for the trash rake machinery, trashracks, and a service bridge.
The top of the sump wall will be located at el 105.5. The flow velocity in
each sump will be 2.4 fps when at the low sump level of 80.0 ft and a design
flow rate of 1,167 cfs.

5. Trashracks will be located just inside the entrance of each pump
sump. It is anticipated that the type of trash to be collected on the
trashrack will be mainly cotton stalks, soybean stalks, small tree branches,
occasional whole trees, and other typical river debris. The racks will be
designed for a clear opening between bars of 3.0 in. The velocity through the
rack at a sump level of 80.0 ft will be 2.8 fps at the pump’s design flow
rate. The incline angle of the rack will vary from 60 to 90 deg depending on
the final selection of the type of mechanical raker.

6. The suction intake to each pump will be through a watertight con-
crete conduit connecting the end of the open sump to the eye of the impeller
of the pump. The cross section of the intake may change from rectangular to
circular such as in a turbine inlet bend, or it may consist of a series of
simple geometric shapes to accomplish the required 90-deg bend from horizontal
flow to vertical flow. The pump suction intake will be formed in reinforced
concrete. Some individual designs may require permanent concrete baffles or
splitter walls to direct the flow properly into the pump impeller. The
detailed design of the pump suction intake will be determined by the pump
supplier.

7. The pump discharge system will consist of a concrete discharge

tunnel that transitions from the circular cross-section pump elbow to a




rectangular outlet section and a backflow gate. The ceiling of the discharge
exit will be located at el 76.5, which is 2.5 ft below the minimum pumping
river el of 79.0. The floor of the discharge outlet will be located at
el 68.0, which is the bottom of the outlet channel. To limit the discharge
velocity to within the range of 8 to 10 fps at the pump’'s maximum flow rate,
the dimensions of the discharge opening would be approximately 8.5 ft high by
16.5 ft wide. These dimensions will be the basis for the minimum size dis-
charge opening.

8. A backflow gate will be placed at the end of the discharge system.
The backflow gate, which will contain multiple shutters or flaps, will prevent
reverse flow through the pumping system upon pump start-up and shutdown.
Secondly, the backflow gate will be used as a throttling gate during pumping
conditions of low and negative static heads. Should the pumps require this
mode of operation, the shutter openings in this gate will be sized to provide
the necessary additional losses to keep the pump in the safe operating area of
its head-discharge curve. If required during low-head pumping, the gate will
remain in the fully down position after pump start-up and will not be raised

until the static head has increased to a safe level for the pump.

Purpose and Scope of the Model Studies

9. A numerical model was used to ascertain if flows in the approach
channel and pump bays displayed any objectionable features. The numerical
model was an effective device that complemented and reduced the testing in the
physical models.

10. A section model that simulated three pump bays and three pump
intakes was used to develop a satisfactory design for the pump bays and pump
intakes.

11. A comprehensive model that simulated a portion of the approach
channel and the sump was used to cvaluate the hydraulic characteristics and
develop modifications required for a satisfactory design of the approach
channel, transition from the approach channel (abutment training walls) to the
sump, and the sump.

12. The models provided information necessary for development of a
design that will provide satisfactory hydraulic performance for all antici-

pated flow conditions.




PART II: THE MODELS

Description

13. The numerical model consisted of a two-dimensional vertically
averaged hydrodynamic model WESSEL, which is based on the work of Thompson and
Bernard.” The flow field was simulated to the Yazoo Backwater Pumping
Station under selected operating conditions. A number of simplifying assump-
tions were made for the implementation of the two-dimensional numerical model:

Small vertical components of velocity relative to total

velocity.
b. Vertical channel banks.
c. Constant depth of flow (20 ft).
d. Uniform distribution of outflow at the active pump bay
entrances.
e. Uniform distribution of inflow to the approach channel.
f£. No flow through channel boundaries other than inlet and

outlets.

14, The 1:12.5-scale section model consisted of a ponded approach to
three pump bays (Figure 3). Various training wall configurations and pump
intake designs were investigated in the section model. The geometry of the
various designs investigated could be readily modified and evaluated in the
section model. The section model provided only qualitative results because
the approach geometry to the model pump bay did not simulate the proposed
prototype geometry. The most feasible designs developed in this model were
tested in the comprehensive model. A portion of the floor and sidewall was
transparent to permit observation of currents and turbulence approaching and
entering the suction bell.

15. The 1:26-scale comprehensive model reproduced a 2,500-ft length and
1,000-ft width of approach to the sump, the sump, pump bays, and pump intakes.
The model limits are indicated by the dashed lines in Plate 1. The approach
channel was contained in a plywood flume and simulated with pea gravel

(Figure 4). Pea gravel was used to facilitate modifications to the channel

*

J. F. Thompson and R. S. Bernard. 1985 (Aug). "WESSEL: Code for
Numerical Simulation of Two-Dimensional Time-Dependent Width-Averaged

Flows with Arbitrary Boundaries,"” Technical Report E-85-8, US Army Engineer
Waterways Experiment Station, Vicksburg, MS.
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geometry in the approach channel. The sides of the sump, pump bays, and pump
intakes were constructed of transparent plastic (Figure 4) to permit observa-
tion of vortices, turbulence, and subsurface currents. Flow through each pump
intake was provided by individual suction pumps that permitted simulation of
various flow rates through one or more pump intakes.

16. Water used in the operation of the models was supplied by pumps,
and discharges were measured by electromagnetic and turbine flowmeters. Steel
rails set to grade along the sides of the flumes provided a reference plane

for measuring devices. Water-surface elevations were measured by point gages.
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Evaluation Techniques

17. Techniques used for evaluation of hydraulic performance included

the following:

a.

1o

o

[=R

o

Visual observations were made to detect surface and/or sub-
merged vortices (Figure 5). A design that permits a Stage C
surface vortex or submerged vortex with a visible air core is
considered unacceptable. Stages of surface vortex development
are shown in Figure 5. A typical test consisted of document-
ing, for a given flow condition, the most severe vortex that
occurred in a 10-min (model) time period. Current patterns in
the approach channel were determined by dye injected into the
water and confetti sprinkled on the water surface.

The magnitude of currents in the approach channel and sump were
measured with an electromagnetic velocity probe.

Swirl angle was measured to indicate the strength of swirl
entering the pump intake. A swirl angle that exceeds 3 deg is
considered unacceptable. Swirl in the pump columns was indi-
cated by a vortimeter (free-wheeling propeller with zero-pitch
blades) located inside the pump column (Figure 5). Swirl angle
is defined as the ratio of the blade speed Vg at the tip of
the vortimeter blade to the average velocity V, for the cross
section of the pump column. The swirl angle 6 1is computed
from the following formula:

\
o - tanl @
a
where
Ve = xdn
Q
Va A
and

Vg = tangential velocity at the tip of vortimeter blade, fps
V, = average pump column axial velocity, fps

d = pump column diameter (used for blade length), ft

n = revolutions per second of the vortimeter

Q = pump discharge, cfs

A = cross-sectional area of the pump column, 2

Boundary pressures were measured by piezometers to investigate
pressure conditions inside the suction bell and formed suction
intake.

Velocity distribution and flow stability in the pump column
were measured by impact tubes and piezometers at the approxi-
mate location of the pump propeller (Figure 6).

12
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I+h

Pressure fluctuations were measured by a movable probe to
determine the stability of flow entering the pump intakes.
Pressure fluctuations that exceeded 3 ft of water (prototype)
are considered unacceptable.

18. A deviation in the ratio of the average measured velocity to the
average computed velocity of 10 percent or greater was considered unaccept-
able. Four piezometers were located around the periphery of the pump column
(Figure 6) to measure an average static pressure at this location. Impact
tubes (copper tubes with 1/8-in. ID) were installed with their tips in the
same plane as the four piezometers to measure the total pressure at 25 various
peints (Figure 6) in the pump column. The head differential between the total
pressure at each point in the pump column and the average static pressure pro-
vides a velocity at each point in the pump column. This velocity was measured
by 25 individual electronic differential cells. The differential cells were
connected to a data acquisition system capable of collecting data for various
lengths of time and sampling at various rates. The data acquisition system
was also capable of analyzing the data and providing the minimum, average,
maximum, root mean square, and standard deviation of the ratios of the veloc-
ities measured at each point to the theoretical average velocity.

19. A typical test consisted of stabilizing the water-surface elevation
and flow rate through each pump prior to collecting data. Data were collected
for 1 min (model time) and sampled at a rate of 100 samples per second. The
velocity detected by each of the 25 impact tubes and the 4 piezometers during
the minute of data collection was divided by the theoretical velocity based on

continuity. This ratio was plotted as contour lines of equal velocity ratios.

Scale Relations

20. The models were sized so that the Reynolds number R, defined as

Vad
R = —- (2)
where

V, = average velocity in pump suction column, fps

a
d = pump column diameter, ft
v = kinematic viscosity of fluid

was greater than 10° to minimize scale effects due to viscous forces.

14




21. The accepted equations of hydraulic similitude, based upon Froudian

criteria, were used to express the mathematical relations between the dimen-

sions and hydraulic quantities of the models and prototype.

The general

relations expressed in terms of the model scales or length ratios L, are
presented in the following tabulation:
Scale Relations
Model : Prototype
Dimension Ratio Comprehensive Section
Length Lr 1:26 1:12.5
Area A = L2 1:676 1:156
r r
Velocity Vr Li/z 1:5.1 1:3.54
Discharge Q Li/z 1:3,447 1:552
Time T = Ll/2 1:5.1 1:3.54
r r
Pressure P =1 1:26 1:12.5
r r

22. Measurements of discharge, water-surface elevation, heads, veloci-

ties, time, and frequency can be transferred quantitatively from the model to

prototype equivalents by means of the scale relations.

15




PART III: TESTS AND RESULTS

Numerical Model

23. The numerical model was used primarily as a screening tool for
development of appropriate approach channel geometries to be further investi-
gated in the physical models. Early in the study it was assumed that asym-
metrical operation of the pumps would generate adverse approach flows to the
sump. These adverse approach conditions were described by the numerical model
and confirmed in the comprehensive model. The numerical model indicated that
elaborate divider walls would be needed to channel the approach flow and pre-
vent adverse eddies that were generated by asymmetrical pump operation. The
numerical model proved to be a valuable tool for indicating the location and
length of the divider walls necessary to provide satisfactory flow to the pump
intakes. However, concurrent studies in the section and comprehensive models
resulted in the develoupment of a pump intake design that provided satisfactory
flow to the pumps with the original proposed approach channel design regard-
less of the number or combination of pumps operating. Therefore, there was no
need for an elaborate, costly approach channel design to provide evenly dis-
tributed flow to the pump intakes. Further investigations with the numerical

model to develop an approach channel were discontinued.

Section Model

Pump_intakes
24, Tests were conducted in a 1:12.5-scale model of three pump bays

(Figure 3) to evaluate various pump intake designs. The most feasible design
contributed to the development of designs to be further investigated in the
comprehensive model (discussed later).

25. The 1.29-ft-diam model pump bell simulated a prototype bell
diameter D of 16.17 ft. Each pump bay was 97.0 ft long (6D) and 32.34 ft
wide (2D). A pump bell was located inside pump bay 1 as shown in Plate 4. A
portion of the floor and sidewall of the pump bay was transparent to permit
observation of currents and turbulence approaching and entering the suction
bell.

26. Pump intake designs were investigated and evaluated by determining

16




the critical submergence S, for surface and submerged vortices for various
flow rates and submergences. Critical submergence is defined as the sub-
mergence S that generates incipient submerged vortices with visible air
cores or Stage C surface vortices. Submergence is measured from the invert of
the suction bell to the water surface. Critical submergence was obtained by
setting a submergence and varying the discharge to determine the maximum
discharge permissible that would not induce surface and/or submerged vortices
within a 100-sec (prototype) time frame.

27. Evaluation of the various designs indicated a predominance of floor
vortices and negligible development of sidewall and backwall vortices. Criti-
cal submergence for floor vortices was used as a basis for comparing the var-
ious designs.

28. The type 1 pump intake is shown in Plate 4. For discharges as
great as 3,600 cfs and submergences as low as 5 ft, there was no significant
development of surface, sidewall, or backwall vortices. A strong floor vortex
(maximum diameter 6 in.) induced severe vibration and noise as it formed below
the suction bell (Plate 4). Critical submergence for the type 1 pump intake
that generated floor vortices is indicated in Plate 5. The type 1 pump intake
was considered unacceptable due to severe floor vortices.

29. The type 2 pump intake was similar to the type 1 except a splitter
wall was added below the pump intake (Plate 6). The splitter wall, for given
discharges, permitted operation without floor vortices at relatively lower
submergences (Plate 5). The floor vortices that did occur formed on each side
of the splitter wall (Plate 6, Section B-B) and were smaller in diameter (max-
imum diameter 1.5 in.) and less intense than those observed below the type 1
pump intake.

30. Tests were conducted to investigate how the type 2 pump intake
would perform with adverse approach flow. A barrier was placed in the
approach to direct flow asymmetrically into the pump bay (Plate 7). A com-
parison of critical submergence with the type 2 pump intake with different
approach conditions indicates that the asymmetric approach flow increases the
tendency for floor vortices (Plate 5).

31. The roof was elevated to form the type 3 pump intake (Plate 8).

Critical submergence is illustrated in Plate 5. The type 3 pump intake was
satisfactory for submergences greater than 11.28 ft, but for lesser submer-

gences (below roof), severe air-entraining Stage E surface vortices occurred.

17




32. Additional tests were conducted to evaluate hydraulic performance
with the splitter wall removed and the ceiling located various distances £
from the suction bell (Plate 9). Plate 10 defines conditions of observed
incipient floor vortex formation by a plot of the ratio of distance between
the suction bell and the ceiling to the diameter of the suction bell versus
the critical or minimum value of the discharge parameter. The plot indicates
that floor vortices would increase significantly with the ceiling located
closer than 0.37D from the suction bell.

33. The ceiling was located 0.37D from the suction bell and various
transition radii R (Plate 11) were investigated. Plate 11 illustrates in-
cipient surface vortex formation (Stage C) observed for various submergences
as the transition radius was varied relative to discharge. The plot indicates
flow improvement for all submergences as the radius was increased to 0.25D.
The transition radius was also evaluated by measuring pressure below the pump
intake with a movable electronic pressure transducer as shown in Plate 11.
Plate 12 indicates less negative pressure was obtained for all submergences
with a radius of 0.25D.

34. The ceiling was located flush with the suction bell, the splitter
wall was installed, and tests were conducted to evaluate the effect of the
transition radius on surface vortices and pressures below the pump intakes for
typical submergences of 1.0D, 1.5D, and 2.0D. Plate 13 indicates the improve-
ments in suppression of surface vortices obtained as the ceiling radius was
increased above 0.5D. A submergence of 0.5D (Plate 13) showed an increase in
surface vortices as the radius was increased above 0.5D. This was due to the
water surface being below the point of vertical tangency of the radius.

Plate 14 indicates that the transition radius has an insignificant effect on
pressure below the pump intake.

35. Based upon tests of pump intake configurations described in
paragraphs 32-34, a pump intake (type 4) with the ceiling located flush with
the suction bell, a transition radius of 0.25D, and a splitter wall (Plate 15)
was considered the most feasible hydraulic design to evaluate further in the
comprehensive model. This design was more effective at preventing floor vor-
tices and improving pressure below the pump intake. Although surface vortices
did occur in the type 4 design, they can usually be prevented more readily

than either floor vortices or excessively low pressures below a pump intake.
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Training walls

36. Tests were conducted in the section model to investigate various
configurations for the approach training walls. Initially, 15 pumps were
proposed for the pumping station; however, observation of approach flows in
the general model indicated unsatisfactory flow distribution to the pump in-
takes due to adverse currents in the approach when certain numbers or combina-
tions of pumps were operating. Initially, training walls located upstream
from the pump bays to properly direct the flow into the pump bays were inves-
tigated. Testing using a two-dimensional numerical model indicated the
approximate length of the training walls needed and that every three pumps
should be located between training walls.

37. Sketches of the two designs investigated are shown in Plates 16
and 17. The designs were evaluated by measuring current velocities approach-
ing the pump intakes and observing surface and submerged vortices.

38. Initial tests were conducted with the training walls offset two
bell diameters (type 1 training wall) as shown in Plate 16. The operation of
pump 1 induced a symmetrical inflow condition in the pump bay. Velocity pat-
terns measured 0.6D from the surface and isovels measured 14 ft from the en-
trance to the pump bay are shown in Plates 18 and 19, respectively. The
operation of pumps 1 and 2 induced an asymmetrical flow condition in each bay
(Plates 20 and 21). The operation of pumps 1, 2, and 3 produced symmetrical
flow in bay 2 and asymmetrical flow in bays 1 and 3 (Plates 22 and 23).

39. Identical tests were conducted with the splitter walls located
flush with the abutments (type 2 training walls) as shown in Plate 17. The
operation of pump 1 induced an asymmetrical flow condition at the entrance to
the pump bay as lateral flow from the right contracted as it rounded the pier
nose (Plates 24 and 25). The operation of pumps 1 and 2 (Plate 26) generated
asymmetrical flow at the entrances to the pump bays (Plate 27). The operation
of pumps 1, 2, and 3 induced flow contractions at the upstream ends of the
splitter walls that concentrated and accelerated flow in the center between
the splitter walls (Plate 28). Flow decelerated and was unstable as it en-
tered the pump bays. One suction bell diameter (14 ft) from the bay entrance,
flow patterns were symmetrical in bay 2 and asymmetrical in bays 1 and 3
(Plates 28 and 29).

40. A qualitative comparison of the two designs shown in the following

tabulation indicates no significant difference in hydraulic performance. It
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was decided to evaluate the two designs in the 1:26-scale comprehensive model.

Design Pumps Flow Distributiorn
Training Wall Operating Bay 1 Bay 2 Bay 3
Type 1 1 Good
1 & 2 Poor Poor
1, 2, &3 Fair Good Fair
Type 2 1 Poor
1 &2 Fair Fair
1, 2, &3 Fair Good Fair

Comprehensive Model

17,500-cfs-capacity pumping station
41. A sketch of the type 1 approach channel, type 1 abutments, and

type 1 sump is shown in Plate 30. Abutment and sump details are shown in
Plate 31. The typical flow pattern observed with the type 1 abutment is shown
in Plate 32. 1Isovels in the pump bays with all pumps operating are shown in
Plates 33 and 34. The eddy that formed in the offset of the type 1 abutment
did not create adverse flow conditions at the entrance to the pump bays.

42, 1In the interest of economy, the width of the downstream end of the
approach channel was reduced from 643 to 577 ft (Plate 31) by modifying the
abutments as shown in Plates 35 and 36 (type 2 approach and abutments).

43. Hydraulic performance in the pump bays with the type 2 approach and
type 2 abutments was similar to that observed with the original design pumping
station. The magnitude and direction of approach bottom currents for various
flow conditions are shown in Plates 37-40. Surface currents approaching the
type 2 abutments and the entrances to the pump bays are indicated by time-
lapse photographs of the confetti (Photo 1). The typical flow pattern along
the type 2 abutment is shown in Plate 41. The eddy observed with the offset
of the type 1 abutment was eliminated with the type 2 abutment. With all
pumps operating, flow was well distributed in both the approach channel
(Plate 40) and in the entrance to the pump bays (Plates 42 and 43). Some
combinations of pumps operating generated asymmetrical flow in the approach
channel (Plate 38), which induced asymmetrical flow into the pump bays (pump
bay 8, Sections A-A, B-B, Plates 44 and 45, respectively). Performance indi-

cators observed in certain pump intakes are tabulated in Table 1.
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44. The pump intake in pump bay 8 was modified to simulate a conven-
tional vertical pump intake in an open pump bay (type 2 sump, Plate 46). Ad-
verse performance occurred in pump bay 8 for certain combinations of pumps
operating. Adverse performance is indicated by the isovels in Plates 46
and 47, and by performance indicators in Table 1. Although pumps 1-8 were
operating, data were taken for pump 8 only. It is apparent from these data
that the more streamlined pump intake improves the distribution of flows
entering the pump intake.

45. Model tests were conducted to evaluate hydraulic performance in
three sump designs by monitoring flow distribution and stability in the pump
column. One of the pump columns was instrumented and a data acquisition
system was installed to permit measurement of velocity distribution and flow
stability at the approximate location of the pump propeller. The instrumenta-
tion and data acquisition system are described in paragraph 17e. The tests
were conducted with either all pumps operating (best approach channel flow
condition) or with about half the pumps on one side operating (worst approach
channel flow condition).

46. Geometric details of the type 1 sump design and plots of equal
velocity ratios determined for 8 and 15 pumps operating with water-surface el
of 80 are presented in Plate 48. Numerous zones of reduced and adverse flow
distribution are indicated. The dashed lines in the plots indicate negative
instantaneous velocities.

47. Geometric details and velocity ratios determined with the type 2
sump design are shown in Plate 49. A comparison of the type 2 with the type 1
sump velocity ratio plots indicates that the minimum velocity ratio was more
severe with the type 2 design.

48. Additional streamlining was provided by the type 3 design sump to
induce a more uniform distribution and acceleration of flow. Geometric de-
tails and velocity ratios determined with the type 3 design sump are shown in
Plate 50. The test results obtained with the type 3 sump indicate that stream-
lining the pump intake with a formed suction intake (FSI) provides a signifi-
cant improvement in flow stability and distribution. The type 3 sump also
appears to compensate for adverse flow conditions in the approach channel.
10,000-cfs-capacity pumping station

49. At the request of the US Army Engineer District, Vicksburg, the
discharge capacity of the station was reduced from 17,500 cfs to 10,000 cfs
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by reducing the number of pumps from 15 to 9. The design discharge capacity
per pump remained approximately the same. Details of the sump and approach

channel to the 1:26-scale, 10,000-cfs pumping station are shown in Plates 51

3

.vié;‘Fg

and 52. The approach channel is shown in Figure 7.

L] B odiche -2 !

Figure 7. 10,000-cfs-capacity pumping station, type 3 approach channel

50. The magnitude and direction of bottom velocities in the approach
channel with all pumps (1-9) and with pumps 1-4 operating are shown in
Plates 53 and 54, respectively. Four pumps operating on one side induce
lateral approach flow to the entrance of the pump bays (Plate 54). The type 3
sump, which included an FSI (Plate 55), was installed in pump bay 4. Isovels
obtained upstream of pump bay 4 at Sections A-A and B-B with all pumps operat-
ing indicate satisfactory flow distribution, as shown in Plate 55. With
pumps 1-4 operating, the isovels in Plate 56 indicate uneven flow distribution
in pump bay 4. The adverse flow distribution is caused by the lateral flow at
the entrance of pump bay 4 ‘?late 54). Hydraulic performance indicators of
flow conditions with all pumps and with only pumps 1-4 operating are tabulated
in Table 2. Lines of equal head ratios at the approximate location of the
pump propeller (pump 4) are shown in Plate 57. Vortex development in the
type 3 design is shown in Plates 58 and 59.
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51. The test results indicate that the hydraulic performance of the
10,000-cfs-capacity pumping station equipped with the type 3 sump (FSI) ap-
pears satisfactory and similar to that previously reported with the 17,500-cfs
capacity pumping station with the type 3 sump.

Pump bay width

52. At the request of the Vicksburg District, additional tests were
conducted to refine the design of the type 3 sump by evaluating various pump
bay widths ranging from 21.2 to 28 ft.

53. A 21.2-ft-wide pump bay (type 4 sump) is shown in Plate 60. With
all pumps operating, flow was evenly distributed in the approach observed in
the approach channel and in the pump bays at Section A-A as indicated by the
isovels in Plate 60. Flow tended to become more evenly distributed as it
passed Section B-B (Plate 60).

54. Hydraulic performance indicators with all pumps and with pumps 1-4
operating are tabulated in Table 2. The flow distribution inside the pump
column at the approximate location of the pump propeller is depicted by lines
of equal velocity ratios in Plate 61.

55. The splitter wall was removed (type 5 sump, Plate 62) to determine
its effect on hydraulic performance. Removal of the splitter wall increased
the swirl and had no significant effect on the intensity or location of sur-
face vortices (Table 2). Flow distribution in the pump bay was not signifi-
cantly affected by removal of the splitter wall (Plate 62). Flow in the pump
column with either pumps 1-4 or 1-9 operating was more evenly distributed with
the splitter wall removed (Plate 63).

56. A 23-ft-wide pump bay (type 6 sump) is shown in Plate 64, along
with flow distribution in pump bay 4 with pumps 1-4 operating. Flow distribu-
tion inside the pump column at the approximate location of the pump propeller
is depicted by lines of equal velocity ratios in Plate 65. Vortex development
in the type 6 sump is shown in Plate 66,

57. A 28-ft-wide pump bay (type 7 sump) is shown in Plate 67, along
with flow distribution in pump bay 4. Flow distribution inside the pump col-
umn is shown in Plate 68,

58. Hydraulic performance indicators obtained with sump designs 3
through 7 are shown in Table 2. The basic data tabulated in Table 2 were used
to plot swirl angle versus bay width (Plate 69) and stage of vortex develop-

ment versus bay width (Plate 70). Plate 69 indicates an increase in swirl
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angle as the bay width decreases. The swirl angle measured in all bay widths
was considered acceptable. Plate 70 indicates that surface vortex intensity
increases as bay width decreases. Stage C vortices were observed in pump bays
with widths equal to or less than 28 ft.

Vortex suppressor beams

59. Tests were conducted to investigate the feasibility of using vortex
suppressor beams to eliminate the vortices in the 23-ft-wide pump bay (type 6
sump) .

60. Various sized vortex suppressor beams were investigated at various
locations and angles to determine the most effective design for reducing the
tendency for surface vortices. Hydraulic performance of a vortex suppressor
beam is related to the height and position of the beam. If the beam is too
far from the breast wall, vortices tend to form between the beam and breast
wall (Figure 8). 1If the beam is too close to the breast wall, vortices tend
to develop upstream of the beam (Figure 8). If the height of the beam is
reduced, there is insufficient surface turbulence tc prevent vortices. If the

height of the beam is excessive, then head loss is excessive, turbulence

BEAM

BREAST WALL

BEAM TOC® FAR FROM BREAST WALL

BEAM TOO CLOSE TO BREAST WALL

Figure 8. Hydraulic performance of vortex
suppressor beam with FSI
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downstream from the beam is too severe, and the water level between the beam
and breast wall fluctuates excessively. A design was developed that consisted
of a single beam that prevented development of undesirable surface vortices at
water-surface elevations between 79 and 84. However, at higher water-surface
elevations, vortices occurred between the beam and the breast wall. A design
(type 8) that consisted of two beams (Plate 71) was successful in eliminating
undesirable surface vortices.

61. Flow distribution with the type 8 design in pump bay 4 with
pumps 1-4 operating is shown in Plate 72. Flow distribution inside the pump
column ¢t the approximate location of the pump propeller is depicted by lines
of equal velocity ratios in Plate 73. A plot of water-surface elevation
versus vortex development is shown in Plate 74. Vortex development relative
te discharge and water-surface elevations is shown in Plate 75. Hydraulic
performance indicators are tabulated in Table 2. Evaluation of the plots and
tabulated data indicate that the type 8 design will provide satisfactory
hydraulic performance for all anticipated flow conditions.

Adopted design

62. The approach channel was modified (type 4) to accommodate the nine
23-ft-wide pump bays (type 8) as shown in Plate 76. The adopted design con-
sists of the type 4 approach channel, type 2 abutments, and the type 8 sump.

63. The type 4 approach channel is shown in Figure 9. The type 8 sump
and the type 2 abutments are shown in Plates 76 and 77.

64. The magnitude and direction of bottom velocities in the approach
channel are shown in Plates 78 and 79, respectively, with all pumps and pumps
1-4 operating. For various combinations of pumps operating, surface current
direction is depicted by time-lapse photographs (Photo 2). Flow in the ap-
proach channel and pump bays was evenly distributed with all pumps operating.
With asymmetrical pump operation, lateral flow in the approach (Photo 2)
caused uneven flow distribution in the pump bays as indicated by the isovels
at Section A-A in Plate 80. Flow tended to become more evenly distributed as
it passed Section B-B (Plate 80).

65. Flow distribution inside the pump columns at the approximate loca-
tion of the pump propeller for any combination of pumps operating was satis-
factory. Flow distribution with all nine pumps and only pumps 1l-4 operating
is depicted by lines of equal velocity ratios in Plate 81.

66. Observations to detect surface vortices in the pump bays for
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Figure 9. Type 4 approach channel

various water-surface elevations and combinations of pumps operating revealed
only an occasional Stage A vortex for the expected range of normal operation.
A plot of water-surface elevation versus stage of vortex development shown in
Plate 82 indicates that operation at water surfaces below the minimum sump
level of el 80 does produce higher stages of vortices. Vortex development
relative to discharge and water-surface elevation is shown in Plate 83.
67. Test results indicate that the adopted design will provide satis-

factory hydraulic performance for anticipated flow rates, water-surface eleva-

tions, and any number of pumps operating.
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PART IV: SUMMARY AND DISCUSSION

68. A numerical model was used as a screening tool for development of
approach channel geometries that would provide satisfactory flow and warrant
further investigation in the physical models. The numerical model indicated
that a costly divider wall design would be needed to provide satisfactory
approach flow during asymmetric pump operation. However, concurrent studies
in the physical model resulted in the development of a pump intake design that
provided satisfactory flow to the pumps regardless of the number or combina-
tion of pumps operating.

69. 1Initially, tests were conducted in a 1:12.5-scale section model to
screen various pump intake designs to be further investigated in the
1:26-scale comprehensive model. A predominance of floor vortices was observed
in the various designs investigated. The intensity of the floor vortices was
used as a basis for comparing designs. Tests were conducted with and without
the splitter wall and with the suction bell located various distances from the
floor. The tests indicated that the frequency and intensity of floor vortices
increased as the suction bell was moved closer to the floor.

70. Tests were also conducted to investigate the transition radius on
the invert of the breast wall. These test results generally indicated that
for typical submergences the surface vortices decreased as the radius was
increased.

71. Due to anticipated adverse flow conditions in the sump with asym-
metrical pump operation, it was decided to investigate various configurations
of approach training walls. Tests in the section model provided guidance for
design of tréining walls to be further evaluated in the comprehensive model.

72. Tests in the 1:26-scale comprehensive model were initially conduct-
ed to investigate the flow characteristics in a 15-pump, 17,500-cfs-capacity
pumping station. Tests were conducted to refine the design of the transition
from the approach channel to the sump. During asymmetrical operation of the
pumps, adverse lateral flows in the approach channel were observed. Tests
indicated that a streamlined pump intake (type 3) sump design compensated for
lateral flows in the approach channel. The streamlined intake provided
uniform and stable flow to the pump intake regardless of the adverse flow
conditions in the approach channel.

73. At the request of the Vicksburg District, the discharge capacity
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was reduced from 17,500 to 10,000 cfs by reducing the number of pumps from 15
to 9. As the number of pumps was reduced, the width of the approach channel
was also reduced. The type 4 approach channel (Plate 76) and type 2 abutments
which consisted of 45-deg training walls provided satisfactory hydraulic
performance for all anticipated flow conditions. Various flow conditions in
the approach channel were documented by measurement of the magnitude and
direction of bottom velocities and time-lapse photographs of surface confetti.

74. Additional tests were conducted to refine the design of the type 3
sump (formed suction intake). Evaluation of various pump bay widths indicated
that the swirl angle increased as the bay width decreased and surface vortex
intensity increased as bay width decreased. Surface vortices in the pump bays
were observed for bay widths of 28 ft and less.

75. Tests were conducted to investigate the feasibility of using vortex
suppressor beams to eliminate the vortices in the 23-ft-wide pump bay. A
design that consisted of the formed suction intake and two beams (type 8 sump)
was successful in eliminating undesirable surface vortices for anticipated
flow conditions.

76. The adopted design consists of the type 4 approach channel, type 2
abutments, and the type 8 sump. The adopted design provided satisfactory
hydraulic performance for anticipated flow rates, water-surface elevations,

and any combination of pumps operating.
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a. Pumps 14-15 operating

b. Pumps 1-3 operating

Photo 1. Type 2 approach channel, type 2 abutments, type 1
sump, discharge per pump 1,460 cfs, water-surface el 80.0,
exposure time 25 sec (prototype) (Sheet 1 of 3)




C.

Pumps 5-11 operating

d. Pumps 1-5 and 11-15 operating

Photo 1. (Sheet 2 of 3)




e. Pumps 1-15 operating

Photo 1. (Sheet 3 of 3)




a. Pumps 1-9 operating (side view)

ot N N B N E R

b. Pumps 1-9 operating

Photo 2. Type 4 approach channel, type 2 abutments, type 8
sump, discharge per pump 1,460 cfs, water-surface el 80.0,
exposure time 25 sec (prototype) (Sheet 1 of 3)




c. Pumps 1 and 2 operating

d. Pumps 1 and 2 oberating (side view)

Photo 2. (Sheet 2 of 3)




f. Pumps 1-6 operating

Photo 2. (Sheet 3 of 3)
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